Thursday, November 1, 2012

Homework: 5-2 worksheet

TISK Problems

- 1) Evaluate: $81 (18 8)^2 \div 20$
- 2) Factor Completely: $8x^2 32x 360$
- 3) Identify the congruent angles if $\triangle ABC \cong \triangle DEC$

Homework Check

- p. 243 #24-27, 28-31 & 34
- 24) $\overline{AD} \perp \overline{BC}$
- **25)** $\overline{AE} \cong \overline{EC}$; $\overline{BE} \perp \overline{AC}$; $\overline{AB} \cong \overline{BC}$
- 26) \overline{BF} is a median
- 27) ∠CAD ≅ ∠DAB
- 28) Any triangle
- 29) In a right triangle, the altitudes intersect at the vertex of the right angle.
- 30) No such triangle
- SU) NO SUCH thangle
- 31) An obtuse triangle

Homework Check

34) If an angle bisector of an angle is also an altitude, then the triangle is isosceles.

Chapter 5...?

- We will be using a supplemental text for Chapter 5.
 - Each night, supplemental "notes" will be provided on my website. Homework Calendar -> Handouts
 - In this text, an important theorem was covered in the previous chapter that we will add to our notes now!

Theorem

- The ONE time that SSA works, and we call it something else ...
- Hypotenuse-Leg (HL) Theorem
 - If the hypotenuse and leg of a right triangle are congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent.

§5.2 Bisectors of a Triangle

- Lines that intersect in the same point are concurrent lines
- The point they intersect at is called the point of concurrency

Circumcenter

The circumcenter is the point of concurrency of the perpendicular bisectors of a triangle.

Concurrency of Perpendicular Bisectors of a Triangle Theorem

The circumcenter is equidistant from the vertices of the triangle.

Angle Bisector of a Triangle

The bisector of an angle of a triangle is called the angle bisector of the triangle.

Incenter

The incenter is the point of concurrency of the angle bisectors.

Concurrency of Angle Bisectors of a Triangle Theorem

The incenter is equidistant from the sides of the triangle.

AI = BI = CI

The Angle Bisectors of Triangle XYZ meet at point P.

Which segments are congruent?Find *PT* and *PV*.

